

MINI REVIEW

Antibody-based therapeutics in the era of precision medicine: Transforming drug discovery and disease management

Pratibha Patel

Department of Pharmaceutics, Odisha University of Health and Sciences, Odisha, India

ABSTRACT

Antibody-based therapies have revolutionized contemporary medicine by allowing for the targeted approach to disease-causing molecules. Thanks to their remarkable specificity and versatility, antibodies are essential in crafting next-generation medications that adhere to the principles of precision medicine. These biologics are engineered to selectively interact with molecular targets, providing effective and personalized treatment options for a broad spectrum of diseases. This examines the influence of antibody therapeutics in targeted treatments, showcasing significant developments such as monoclonal antibodies, bispecific antibodies, and antibody-drug conjugates. Monoclonal antibodies offer precision, bispecific antibodies facilitate targeting of two different molecules, and antibody-drug conjugates merge targeted delivery with cytotoxic agents for improved effectiveness. However, there are still challenges associated with antibody development, such as immunogenicity, elevated production costs, and scalability concerns. Overcoming these challenges is critical to enhancing their availability and application in clinical practice. New technologies like artificial intelligence and high-throughput screening are expediting the discovery and refinement of innovative antibodies. Furthermore, personalized treatments specifically designed for individual patient profiles present a promising opportunity in precision medicine.

KEYWORDS

Next-generation drug discovery; Antibody-based therapies; Precision medicine; Targeted therapies; Complex disease management; Biopharmaceutical innovations

ARTICLE HISTORY

Received 9 January 2025; Revised 31 January 2025; Accepted 10 February 2025

Introduction

The field of drug discovery has transitioned from general treatments to precision medicine, which emphasizes customizing therapies based on the specific traits of individual patients. This transformation has been propelled by notable advancements in molecular biology and biotechnology, allowing for the identification and targeting of precise molecules that cause disease [1].

One of the most groundbreaking developments in this area is the creation of antibody-based therapies. In contrast to conventional small-molecule drugs, which frequently lack specificity and may induce off-target effects, antibodies provide exceptional precision by binding selectively to target antigens [2]. This capability to engage distinct molecules renders antibodies particularly useful in tackling diseases with complicated underlying mechanisms, such as cancer, autoimmune disorders, and infections [3].

Antibodies also harness the body's immune system's inherent defense capabilities, enhancing their therapeutic effectiveness. Their versatility, along with advancements in engineering technologies, has broadened their application across various clinical settings [4, 5]. These aspects underscore the crucial importance of antibody therapeutics in the future of drug discovery, offering renewed hope for the treatment of previously difficult-to-treat diseases with improved effectiveness and fewer side effects. As research continues, antibody-based treatments are expected to maintain their leading position in the realm of precision medicine [6].

Antibodies in Drug Discovery

Types of therapeutic antibodies

- Monoclonal antibodies (mAbs): These are antibodies that have been created in the laboratory to specifically target certain antigens. They are fundamental to antibody-based therapies, used for purposes ranging from neutralizing pathogens to modifying immune reactions [7].
- **Bispecific antibodies:** These antibodies are designed to attach to two different antigens at the same time, which can improve therapeutic effectiveness, particularly in circumstances that require targeting two pathways, such as in some cancers [8].
- Antibody-drug conjugates (ADCs): These products merge
 the targeting ability of antibodies with the destructive
 potential of small-molecule drugs, facilitating the precise
 delivery of therapeutic substances to diseased cells while
 minimizing impacts on healthy tissues [9].

Mechanisms of action

Therapeutic antibodies function via various mechanisms, such as:

- Inhibiting key molecular interactions essential for disease advancement (e.g., trastuzumab targeting HER2 in breast cancer).
- Amplifying immune responses, demonstrated by immune checkpoint inhibitors (e.g., pembrolizumab used for melanoma).

 Transporting cytotoxic agents directly to affected cells, as illustrated by antibody-drug conjugates like brentuximab vedotin.

Advancements in Antibody Therapeutics

Innovative antibody engineering

The advancement of antibody therapeutics is characterized by the creation of humanized and fully human antibodies, which minimize immunogenic responses and improve compatibility [10]. Innovative formats like nanobodies and single-chain variable fragments (scFvs) offer further advantages, including better tissue penetration and enhanced stability.

Precision targeting in complex diseases

- Oncology: Antibodies are crucial in cancer treatment, with immune checkpoint inhibitors (such as nivolumab) significantly changing the landscape for metastatic cancer therapy. CAR-T therapy, which involves modifying a patient's T-cells to express chimeric antigen receptors, is another significant advancement in precise targeting [11].
- Autoimmune disorders: Antibodies like infliximab (anti-TNF-α) have revolutionized the treatment of autoimmune conditions, including rheumatoid arthritis and Crohn's disease, by specifically targeting inflammatory pathways [12, 13].
- Infectious diseases: Antibodies have demonstrated potential in addressing emerging infectious diseases, notably COVID-19, where monoclonal antibodies like casirivimab and imdevimab offered essential treatment options [14].

Role of artificial intelligence and high-throughput screening

The application of artificial intelligence (AI) in the realm of antibody discovery has transformed the methodology by speeding up the identification of new targets and enhancing antibody design [15]. AI-based techniques sift through large datasets to forecast effective antibody architectures, which in turn lowers development time and expenses. Furthermore, high-throughput screening technologies facilitate the quick evaluation of many antibody candidates, greatly boosting efficiency and success rates in drug development. Collectively, these innovations are reshaping antibody discovery and leading to more targeted and efficient therapeutic options [16].

Challenges and Limitations

Even with their promise, antibody therapeutics encounter various obstacles:

- Immunogenicity: The immune system in humans might identify therapeutic antibodies as foreign substances, potentially resulting in negative reactions.
- Cost and Time: Developing antibodies is not only costly but also requires significant time, which often hinders their availability.
- **Production Scalability:** The ability to manufacture sophisticated antibody structures in large quantities remains a technical challenge, necessitating cutting-edge bioprocessing technologies.

Tackling these challenges is essential for enhancing the effectiveness of antibody-based treatments in global healthcare.

Future Directions and Opportunities

The outlook for antibody-based treatments is promising, fueled by advancements such as:

- Tailored antibody treatments: Using patient-specific information to create personalized antibodies designed for individual requirements.
- Combination strategies: Merging antibodies with other treatment methods, such as small molecules and gene therapies, to achieve complementary effects.
- CRISPR and synthetic biology: Applying gene-editing technologies to develop next-generation antibody formats that possess improved functionality [17].
- **Initiatives for accessibility:** Innovations in manufacturing techniques may lower expenses and enhance the global availability of antibody therapies.

These advancements are set to broaden the therapeutic capabilities of antibodies, ensuring they remain essential in contemporary medicine.

Conclusions

Antibody therapies have transformed the landscape of drug discovery, providing targeted treatment options for intricate diseases. These biologics, which include monoclonal antibodies and cutting-edge CAR-T cell therapies, have shown exceptional flexibility and effectiveness in addressing ailments such as cancer, autoimmune conditions, and infectious diseases. Their capacity to specifically bind to targeted molecules reduces off-target effects, establishing them as a fundamental element of precision medicine.

Nevertheless, several challenges persist. Elevated development costs, scalability challenges, and immunogenicity stand as major obstacles that restrict the availability and broad acceptance of antibody-based treatments. However, advancements in antibody engineering, such as humanized and bispecific antibodies, are making strides in overcoming these barriers. Additionally, novel technologies like artificial intelligence and high-throughput screening are enhancing the discovery and refinement of new antibody candidates, speeding up their journey to clinical use.

As we progress toward a personalized medicine era, antibody therapeutics are expected to be crucial in reshaping healthcare. By customizing treatments to align with the individual characteristics of patients, these therapies are likely to enhance treatment outcomes and overall quality of life. With persistent innovation and a strong focus on addressing current challenges, antibody treatments are ready to transform the therapeutic approach to some of the most difficult diseases we face today.

Disclosure statement

No potential conflict of interest was reported by the author.

References

1. Boniolo F, Dorigatti E, Ohnmacht AJ, Saur D, Schubert B, Menden

- MP. Artificial intelligence in early drug discovery enabling precision medicine. Expert Opin Drug Discov. 2021;16(9):991-1007. https://doi.org/10.1080/17460441.2021.1918096
- Smith AJ. New horizons in therapeutic antibody discovery: opportunities and challenges versus small-molecule therapeutics. J Biomol Screen. 2015;20(4):437-453. https://doi.org/10.1177/1087057114562544
- Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-based cancer therapy: successful agents and novel approaches. Int Rev Cell Mol Biol. 2017;331:289-383. https://doi.org/10.1016/bs.ircmb.2016.10.002
- Kandari D, Bhatnagar R. Antibody engineering and its therapeutic applications. Int Rev Immunol. 2023;42(2):156-183. https://doi.org/10.1080/08830185.2021.1960986
- Wagner EK, Maynard JA. Engineering therapeutic antibodies to combat infectious diseases. Curr Opin Chem Eng. 2018;19:131-141. https://doi.org/10.1016/j.coche.2018.01.007
- Elgundi Z, Reslan M, Cruz E, Sifniotis V, Kayser V. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. 2017;122:2-19. https://doi.org/10.1016/j.addr.2016.11.004
- Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361-370. https://doi.org/10.1038/nrc3930
- Acheampong DO. Bispecific antibody (bsAb) construct formats and their application in cancer therapy. Protein Pept Lett. 2019;26(7): 479-493. https://doi.org/10.2174/0929866526666190311163820
- Chudasama V, Maruani A, Caddick S. Recent advances in the construction of antibody-drug conjugates. Nat Chem. 2016;8(2):114-119. https://doi.org/10.1038/nchem.2415

- Doevendans E, Schellekens H. Immunogenicity of innovative and biosimilar monoclonal antibodies. Antibodies. 2019;8(1):21. https://doi.org/10.3390/antib8010021
- Koo SL, Wang WW, Toh HC. Cancer immunotherapy-the target is precisely on the cancer and also not. Ann Acad Med Singapore. 2018; 47(9):381-387. https://doi.org/10.47102/annals-acadmedsg.v47n9p381
- Li P, Zheng Y, Chen X. Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Fron Pharmacol. 2017;8:460. https://doi.org/10.3389/fphar.2017.00460
- Leone GM, Mangano K, Petralia MC, Nicoletti F, Fagone P. Past, present and (foreseeable) future of biological anti-TNF alpha therapy.
 J Clin Med. 2023;12(4):1630. https://doi.org/10.3390/jcm12041630
- Deb P, Molla MM, Saif-Ur-Rahman KM. An update to monoclonal antibody as therapeutic option against COVID-19. Biosaf Health. 2021;3(02):87-91. https://doi.org/10.1016/j.bsheal.2021.02.001
- 15. Bai G, Sun C, Guo Z, Wang Y, Zeng X, Su Y, et al. Accelerating antibody discovery and design with artificial intelligence: Recent advances and prospects. Semin Cancer Biol. 2023;95:13-24. https://doi.org/10.1016/j.semcancer.2023.06.005
- 16. Duensing TD, Watson SR. Antibody screening using high-throughput flow cytometry. Cold Spring Harb Protoc. 2018;2018(1): pdb-top093773. https://doi.org/10.1101/pdb.top093773
- 17. Khoshnejad M, Brenner JS, Motley W, Parhiz H, Greineder CF, Villa CH, et al. Molecular engineering of antibodies for site-specific covalent conjugation using CRISPR/Cas9. Sci Rep. 2018;8(1):1760. https://doi.org/10.1038/s41598-018-19784-2